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Abstract. Gravitational scattering in the ADD model is considered at both sub- and transplanckian en-
ergies using a common formalism. By keeping a physical cut-off in the KK tower associated with virtual
KK exchange, such as the cut-off implied by a finite brane width, troublesome divergences are removed
from the calculations in both energy ranges. The scattering behavior depends on three different energy
scales: the fundamental Planck mass, the collision energy and the inverse brane width. The result for en-
ergies low compared to the effective cut-off (inverse brane width) is a contact-like interaction. At high
energies the gravitational scattering associated with the extra dimensional version of Newton’s law is
recovered.

1 Introduction

The ADD model [1–3] is an attempt to solve the hierar-
chy problem by introducing extra dimensions in which only
gravity is allowed to propagate. For distances smaller than
the assumed compactification radius,R1, the gravitational
potential will then be altered and has the form

V (r)

m1m2
=−GN(4)R

nSn
Γ (n)

rn+1
, (1)

where n is the number of extra dimensions, GN(4) de-
notes the ordinary 3+1-dimensional Newton’s constant,
Sn = 2π

n/2/Γ (n/2) is the surface of a unit sphere in n
dimensions and Γ (n) is the Euler Gamma function. This
implies that the strength of gravity increases much faster
with smaller distance as compared with the normal 1/r be-
havior, and the fundamental Planck scale (related to the
mass scale where the corresponding de Broglie wave length
equals the black hole radius) is reduced and given by

MD =
1

(8πRnGN(4))
1
n+2

. (2)

The presence of strong gravity at distances smaller than
the compactification radius opens up the possibility of ob-
serving gravitational scattering and black hole production
at collider experiments and in cosmic rays. To eliminate

a e-mail: gosta.gustafson@thep.lu.se
b e-mail: malin.sjodahl@manchester.ac.uk
1 Here we use the notation of [4], so that R is the radius and
not the circumference.

the hierarchy problem, and not only reduce it, the new
Planck scale should be of the order of TeV, and LHC will be
a quantum gravity probing machine.
In order to quantify the amount of gravitational inter-

action, the theory was formulated as a field theory in [5,
6]. As the extra dimensions are compactified, the allowed
wave numbers (and hence momenta) in these dimensions
are quantized Kaluza–Klein (KK) modes. The KK modes
can of course enter both as external and internal particles
in the Feynman diagrams derived from the theory. When
the KK modes are internal (as for elastic gravitational
scattering) they have to be summed over. The problem is
that the sum over KK modes diverges for 2 or more extra
dimensions,

∑

l

1

−m2
l
+k2

= SnR
n

∫
mn−1

−m2+k2
dm. (3)

Here l enumerates the allowed KK modes with momenta
ml in the extra dimensions, m = |ml|, and k is the ex-
changed 4-momentum in our normal space. (We will for
simplicity call this object a propagator, despite the fact
that the Lorentz structure is not included.)
In the original papers [5, 6] this divergence problem was

dealt with by introducing a sharp cut-off,Ms, argued to be
of the same order of magnitude as the Planck mass, as new
physics anyhow is expected to occur at the Planck scale.
Various mathematical forms of cut-offs have also been dis-
cussed in [7]. For n ≥ 3 and momentum transfers small
compared toMs, the sum was then estimated to give

∼
1

n−2
RnMn−2s ≈

1

GN(4)(n−2)

Mn−2s

Mn+2D

. (4)
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In the Born approximation this would lead to a cross sec-
tion of the form [8]

dσ

dz
∼

s3

(n−2)2

(
Mn−2s

Mn+2D

)2
F (spin, z) , (5)

where z is cosine of the scattering angle in the center of
mass system,

√
s the total CMS energy, and F a function

taking spin dependence into account.
Ordinary gravitational scattering in 3+n dimensions

would correspond to a potential ∝ 1/r(n+1), but the scat-
tering given by (5) has a completely different angular be-
havior. In particular the expected forward peak is totally
absent. Fourier transforming the amplitude in (4) to pos-
ition gives a δ-function potential, ∝ δ(r̄), and the corres-
ponding Born approximation cross section in (5) is there-
fore isotropic. Thus it is obvious that the approximation in
(4) does not contain the full story of gravitational scatter-
ing in the ADD model.
This problem was considered in [4] by Giudice, Rat-

tazzi, and Wells. These authors point out two important
facts.

i) For an interaction with a large Born amplitude but
a short range, the cross section is not determined by the
Born term alone. Higher order loop corrections are im-
portant to keep the cross section within the unitarity
limits.

ii) The constant term in (4), which represents a dominant
part of the amplitude in (3), corresponds to a contribu-
tion to the cross section from zero impact parameter,
and should therefore give a negligible contribution to
the cross section when the incoming wave packages do
not overlap. Consequently the important part of the
amplitude in (3) must in this case be the smaller k-
dependent terms, which have been neglected in (4).

In case the interaction is dominated by small angle scat-
tering the cross section can be calculated in the eikonal
approximation, in which the all-loop summation exponen-
tiates [9–11]. The cross section is then given by

σel =

∫
d2b̄⊥

∣∣∣
(
1− eiχ(b̄⊥)

)∣∣∣
2

, (6)

σtot =

∫
d2b̄⊥2Re

(
1− eiχ(b̄⊥)

)
, (7)

χ(b̄⊥) =
1

2s

∫
d2q̄⊥
(2π)2

eiq̄⊥·b̄⊥ABorn(q̄
2
⊥) . (8)

Thus, if the absolute value of the eikonal, χ, is small com-
pared to 1, we in general expect small corrections from the
higher order loop contributions, while for large χ-values
the cross section saturates, and the effective integrand in
(6) is close to 1. We also note that when χ is real, the
scattering is purely elastic. In this paper we will focus on
elastic collisions mediated via (multiple) exchange in the
t-channel.
It is also pointed out in [4] that in the eikonal limit the

Born amplitude does not depend on the spin of the collid-
ing particles and is therefore universal. Expressed in the

fundamental Planck massMD in (2) it is given by [4]

ABorn(k
2) =

s2

Mn+2D

∫
dnm̄

k2− m̄2
. (9)

In [4] a divergent part is subtracted from the integral
in (3) or (9) using dimensional regularization. This sub-
tracted part corresponds to a narrow potential localized
at r̄ = 0. Although the remainder is singular for n equal
to an even integer, its Fourier transform (the eikonal χ in
(8)) is finite everywhere. Assuming the eikonal approxima-
tion to be applicable in the transplanckian region s�M2D,
the authors of [4] thus obtain a reasonable result, where
the gravitational scattering cross section grows with en-
ergy ∝ (s/Mn+2D )2/n. However, we ought to be worried by
the fact that the part of the amplitude, remaining after
the subtraction, grows for larger momentum transfers, and
is largest for backward scattering. This implies that the
conditions for the eikonal approximation are not satisfied.
These uncertainties also make it difficult to estimate the
limit beyond which the result should be applicable, and
how the gravitational scattering behaves for lower energies.
In this paper we want to study in more detail the result

of physical effects, which can tame the divergences. These
effects give effective cut-offs for high-mass KK modes at
some scale (here referred to asMs), which does not have to
be the same as the Planck scaleMD. Our result does indeed
confirm the relevance of the eikonal approximation and the
result in [4] at high energies. For lower energies the behav-
ior is different, wide-angle scattering is dominant and the
amplitude does not exponentiate. Instead a (brane related)
regularization implies that a summation of the s-channel
ladder diagrams give a geometric series. This means that
there will be a change in the energy dependence, and for
lower energies the cross section varies more rapidly, pro-
portional to ∝ s2M2n−2s /M2n+4D .
We want to emphasize that in this paper we do not

discuss phenomena like black hole formation or other non-
linear gravitational effects, which are expected to modify
the final states for very high energies and central collisions.
For a discussion of such effects we refer to [3, 4, 12–17]. We
also neglect possible interference with strong and electro-
weak effects and we study reactions for non-identical par-
ticles such that KK modes appears only in the t-channel.
Some remarks on s- and u-channels are however made in
Sects. 6.3–6.5.
The approach in [4] will be discussed in more detail in

Sect. 2. In Sect. 3, we will introduce a finite width of the
brane, on which the standard model particles are assumed
to live, and see how this leads to a finite amplitude. A simi-
lar effect is obtained by assuming that the position of the
brane is not fixed in the extra dimensions [18, 19]. Fluctua-
tions in the brane then result in a kind of surface tension or
“brane tension”.
The Born term is discussed in Sect. 4 and higher order

loop corrections in Sect. 5. Here we also study in which
kinematical regions the Born term dominates, where the
eikonal approximation is valid, and the behavior of the
cross section in regions where the scattering is approxi-
mately isotropic. The results for scattering cross sections
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in those different kinematical regions are then presented in
Sect. 6. Finally we will summarize and conclude in Sect. 7.

2 Problems and divergences

The integral in (3) or (9) is divergent for n≥ 2 and n ≤ 0
but converges for n-values in the intermediate range 0<
n < 2. To give a physical meaning to the integral for n≥ 2,
a finite result can be obtained by analytic continuation
from smaller n-values, corresponding to a dimensional reg-
ularization. The resulting amplitude, presented in [4], is
given by the expression2

ABorn(k
2) =−π

n
2 Γ
(
1−
n

2

)(−k2
M2D

)n
2−1
(
s

M2D

)2
. (10)

We see that this expression is finite for odd integers n, but
singular for even n, where the Γ -function has poles.
The result in (10) is equivalent to a subtraction of

terms, which are proportional to δ-functions or derivatives
of δ-functions at r̄ = 0̄, and therefore may be expected to
give small contributions to the cross section. Ignoring these
short distance terms we can, however, not expect a smooth
transition between high and low energies, since at low en-
ergies contributions from overlapping wave functions will
be important, (cf. (29) below). Inserting (10) into the 2-
dimensional Fourier transform in (8), we see that this in-
tegral is also divergent. It can be given a finite result by
introduction of a convergence factor:

χ=−

(
bc

b

)n
, bc =

[
s(4π)

n
2−1Γ (n/2)

2Mn+2D

]1/n
. (11)

We note that although the amplitude ABorn in (10) is sin-
gular for even n, χ is finite. Thus χ(b) (like the potential
V (r), to be discussed below) can be analytically contin-
ued to finite values for all n-values. (A finite amplitude,
which corresponds to a potential proportional to 1/rn+1

for n even, is ∝ (−k2)n/2−1 ln (−k2).)
The result in (11) is a single power∝ 1/bn, and the scale

factor (or characteristic impact parameter) bc is defined so
that |χ|= 1 when b= bc. If this expression is inserted into
(6), we see that the term quadratic in χ, which is the Born
term, dominates the integrand for b > bc, where χ < 1, but
higher order corrections are important in constraining the
scattering probability for b < bc.
In [4] it is argued that (6) and (11) should give a real-

istic approximation to gravitational scattering in the
transplanckian region s�M2D (apart from special effects
like black hole formation, which are treated separately).
The net result is then that the total scattering cross sec-
tion grows with energy proportional to b2c , or equivalently
∝ (s/Mn+2D )2/n (cf. (44) below).
The exponentiation in the eikonal approximation in

(6) follows when the scattering is dominated by small an-
gles [9–11]. The one-loop contribution is then dominated

2 We have here inserted a minus sign not present in [4].

by its imaginary part, and the all-loop summation gives an
exponential.
The one-loop diagram in Fig. 1a is given by the follow-

ing expression:

A1-loop(k
2) =

−i

2

∫
d4q

(2π)4
ABorn(q

2)ABorn((k− q)
2)

×
1

(p1− q)2
1

(p2+ q)2
. (12)

Here p1 and p2 denote the momenta of the incoming par-
ticles, the total momentum exchange is k and the loop
momentum q. The imaginary part of the integral in (12)
is coming from on-shell intermediate states (denoted i in
Fig. 1), and can be calculated using the Cutkosky cutting
rules. This implies that the two propagators in (12) are
replaced by δ-functions, which (with the approximation
q2 ≈−q̄2⊥) gives the result

ImA1-loop(k
2) =

i

4s

∫

q⊥<
√
s/2

d2q̄⊥
(2π)2

×ABorn(−q̄
2
⊥)ABorn(−(k̄⊥− q̄⊥)

2) .

(13)

The restriction to physical intermediate states implies
that the integral is limited to the region q⊥ <

√
s/2, but

if ABorn falls off for large q⊥ the finite integral in (13) can
be approximated by an integral over all q⊥. This implies
that the Fourier transform to impact parameter space of
the one-loop contribution is proportional to χ2(b̄⊥). The
sum over multi-loop ladder diagrams with different num-
ber of KK exchanges then exponentiates to (iχ−χ2/2+
. . .) = eiχ−1, and the all order eikonal amplitude is given
by

Aeik(k
2) =−2is

∫
d2b̄⊥e

ik̄⊥·b̄⊥(eiχ−1) . (14)

With the Born amplitude in (10) we have, however,
some problems. The amplitude in (10) does not fall off for
large k⊥. Therefore the real part of the integral in (12) is
not small and negligible compared to the imaginary part. It
is strongly divergent for n≥ 2, as ABorn increases propor-
tional to qn−2 or qn−2 ln(−q2) for large q. For the imagi-
nary part the integral in (13) cannot be extended to infin-
ity, and the Fourier transform of the convolution in (13) is
not given by χ2.

Fig. 1. a The one-loop contribution corresponding to exchange
of two KK modes. The KK modes are drawn as thick lines and
standard model particles as thin lines. b The two-loop contri-
bution
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We conclude that, although the result in (11) and (6) is
an intuitively reasonable result for scattering in a rapidly
falling potential, it should be worrying that it is derived
from an amplitude that grows for large momentum trans-
fers and large scattering angles, while the eikonal approxi-
mation is proven to be valid only when scattering at small
angles is dominating.
At the root of this problem lies the fact that the sub-

traction, which gives the amplitude in (10) and is a result
of the analytic continuation in the number of extra dimen-
sions, does not automatically remove all parts correspond-
ing to δ-functions at r̄ = 0. The definition of the potential
as the Fourier transform of (10) is problematic. To illus-
trate this we study the most simple example represented
by the case n = 3. In the rest frame we have k0 = 0 and
k2 =−k̄2. The integral in (9) is then proportional to

∫
m2dm

k̄2+m2
=

∫
(m2+ k̄2− k̄2)dm

k̄2+m2

=

∫
dm− k̄2

∫
dm

k̄2+m2

=

∫
dm−|k̄|

∫
dx

1+x2

=

∫
dm−|k̄|

π

2
. (15)

The first term, the integral, represents an infinite subtrac-
tion. Its 3-dimensional Fourier transform gives a δ-function
at r̄ = 0 with an infinite weight. The second term corres-
ponds to the result in (10). We may try to define its Fourier
transform V̂ (r̄) as a distribution in the standard way, mul-
tiplying with a test function and interchanging the order
of integration. For test functions of the form exp(−a r2)
we then get (with k ≡ |k̄| and the constant C appearing
in (26))
∫
d3re−ar

2
V̂ (r̄)≡ C

(
−
π

2

)∫
d3kk

∫
d3re−ar

2
eir̄k̄

=−C
π

2

∫
d3kke−k

2/4a
(π
a

) 3
2

=−C16π
7
2
√
a . (16)

We note that this result is finite and goes towards 0 when
the test function approaches a constant, i.e. when a→ 0.
For r 
= 0 we find V̂ (r) = C4π2/r4 by Fourier transforming
from k̄ to r̄ using a convergence factor. Integrating this con-
tribution with the test function above, we get the divergent
result

C16π3
∫ ∞

0

e−ar
2 dr

r2
. (17)

Thus this definition, V̂ (r) = C4π2/r4 for r > 0, is incom-
plete since the result in (16) is finite while the integral in
(17) is infinite. It looks as if a δ-function, δ(r̄), with infinite
weight is missing.
We conclude that the separation in (15) does not in it-

self remove all terms related to δ-functions at r̄= 0̄. Instead
we argue in the next section that dynamical effects will re-
move the divergences in (9) and give finite results. These

mechanisms have real dynamical motivations, and we will
see that such finite cut-offs do remove all divergences re-
lated to the extra dimensions. Divergences related to loop
momenta in our ordinary dimensions are however not af-
fected. For high energies the Born amplitude indeed falls
off for large momentum transfers, and the eikonal approxi-
mation is applicable. For lower energies this is not the case,
and we will in Sects. 4–6 discuss the resulting amplitudes
and cross sections for different relations between the en-
ergy, the Planck mass, and the cut-off scale.

3 Possible solutions

In the ADD model the standard model particles are as-
sumed to live on a thin brane. The mechanism behind this
assumption could possibly be taken from string theory [3],
but is not a part of the ADD model itself. The problems
discussed in the previous section are related to contribu-
tions from KKmodes with very high masses. In a relativis-
tic quantized theory there are also formal problems with an
infinitely thin and infinitely rigid brane. If the brane is not
infinitely thin but has a finite width, this will effectively
suppress the coupling to high-mass KK modes, with wave-
lengths shorter than the brane width. If the brane really
is infinitely thin, then it must be impossible to determine
its position with infinite accuracy. In [18, 19] it is demon-
strated that the fluctuations in the position of the brane
suppress high-mass KK modes, in a way similar to the ef-
fect of a finite brane width. The emission or absorption of
a KK mode gives a recoil to the brane, and the fluctuations
in the location of the brane can then be regarded as a result
of an effective “surface tension” in the brane.
Let us for definiteness assume that the interaction can

be described by an effective field theory, and that the stan-
dard model fields penetrate a finite distance into the ex-
tra dimensions, thus giving an effective finite width to the
brane [20]. (The possibility of fluctuating branes, studied
in [18, 19], give similar results, albeit with a different phys-
ical interpretation.) To be specific we assume a Gaussian
extension, but this assumption is not essential for our con-
clusions. Thus we assume the standardmodel fields to have
a wave function with the extension

ψ(y) =

(
Ms√
2π

)n
2

e−y
2M2s /4 (18)

into the extra dimensions, with y denoting the coordinate
in the extra dimensions. The overlap between two standard
model fields and a KK mode of mass m (what we have in
a vertex) is then proportional to

∫
dyeim·y

(
Ms√
2π

)2n2
e−y

2M2s /2 = e−m
2/(2M2s ) , (19)

or, in other words, the squared absolute value of the wave
function in y-space Fourier transformed to m-space. The
exchange of a KK mode will have this suppression factor
occurring twice, once at every vertex. In total the exchange
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of a KK mode with massm will therefore contribute to the
sum in (9) with a suppression factor

e−m
2/M2s . (20)

Implementing the physical requirement that the stan-
dard model particles live on a narrow brane does therefore
in itself imply a finite “effective” propagator,

RnSn

∫
dmmn−1

k2−m2
e−m

2/M2s (21)

for the exchange of 4-momentum k. (The factor Rn comes
from the density of KK modes and Sn = 2π

n/2/Γ (n/2) is
the unit surface of a sphere in n dimensions.) We note
in particular that this expression (in contrast to the ex-
pression in (10)) falls off like 1/k2 for large momentum
transfers, such that −k2�M2s . This implies that for high
energies, s�M2s , t-channel interaction is dominated by
small values of −k2/s, i.e. by small angles.
In the following sections we will show that the Fourier

transform of the propagator in (21) gives a potential that
falls off∝ 1/rn+1 for distances larger than the brane width,
given by 1/Ms, and smaller than the compactification ra-
dius. Outside this range, both for r < 1/Ms and for r > 2πR
(where the massless graviton dominates), it varies ∝ 1/r.
We will also study the resulting scattering cross sections
under different kinematic conditions.

4 The Born term

4.1 Amplitude

As described in Sect. 3, several physical mechanisms result
in effective cut-offs for high masses in the KK propaga-
tor. After multiplying (21) by the coupling 4πGN(4), con-
tracting Lorentz indices (not explicitly included here), and
using the relation G−1N(4) = 8πR

nM2+nD we get the follow-
ing result for the Born amplitude for ultra-relativistic small
angle scattering:

ABorn(t) =
s2

Mn+2D

Sn

∫ ∞

0

dmmn−1

k2−m2
e−m

2/M2s . (22)

For large angles there are less important corrections from
spin polarization, which we neglect here and in the follow-
ing. This integral is convergent and finite for all negative
values of k2 = t (including 0 when n ≥ 3). It is easy to
find the result in the limits of large and small (negative)
t-values.

– Large momentum transfers, −t�M2s
When −t is large compared to M2s , the term m

2 in the
denominator in (22) can be neglected, which gives the
result:

ABorn(t)≈
s2

Mn+2D

Sn

∫ ∞

0

dmmn−1

t
e−m

2/M2s

= πn/2
(
Ms

MD

)n
s2

M2D · t
. (23)

Thus for large momentum transfers (larger than the
cut-off) the Born amplitude falls off proportional to 1/t.
– Small momentum transfers, −t�M2s
For smaller t, and n > 2, the integral is dominated by
m-values of the order ofMs, and therefore t can now be
neglected in the denominator. We then get the approxi-
mately constant result:

ABorn(t)≈
−s2

Mn+2D

Sn

∫ ∞

0

dmmn−3e−m
2/M2s

=−
2πn/2

(n−2)

(
Ms

MD

)n
s2

M2DM
2
s

. (24)

Thus for momentum transfers that are small compared
to the cut-off, the Born amplitude is approximately
constant for n > 2. For n= 2 the result for small t has
instead a slowly varying logarithmic dependence, pro-
portional to ln(−M2s /t).

4.2 Potential

To get the classical non-relativistic potential we start di-
rectly from the effective propagator in (21) multiplied with
the coupling constant 4πGN(4). Going to the rest frame,
where k0 = 0 and t=−k̄2 we find the corresponding poten-
tial as the 3-dimensional Fourier transform:

V (r)

m1m2
=
1

2s2

∫
d3k

(2π)3
eik̄r̄ABorn(−k̄

2)

=
−1

2Mn+2D

Sn

(2π)3

∫ ∞

0

dmmn−1e−m
2/M2s

∫
d3keik̄r̄

m2+ k̄2

=
−1

2Mn+2D

Sn

(2π)3
2π2
∫ ∞

0

dmmn−1e−m
2/M2s ·

e−mr

r
.

(25)

This represents a weighted sum of Yukawa potentials. The
integral can be expressed in terms of error functions, but
we are here primarily interested in the behavior for large
and small values of r.

– Large distances, r > 1/Ms
For distances larger than the brane thickness the in-
tegral is effectively cut off by the factor e−mr, and
the result becomes insensitive to the Gaussian cut-off
e−m

2/M2s . It is then approximated by

V (r)

m1m2
≈

−1

2Mn+2D

Sn

4π

∫ ∞

0

dmmn−1 ·
e−mr

r

=
−SnΓ (n)

8πMn+2D

·
1

rn+1
. (26)

We see that for distances large compared to the brane
thickness (but small compared to the compactification
radius) we recover the result from (1), a potential falling
off proportional to 1/rn+1, corresponding to the ex-
pected (3+n)-dimensional version of Newton’s law.
When r is increased, smaller m-values ∼ 1/r are im-
portant in the integral in (25) or (26). The phase space



114 G. Gustafson, M. Sjödahl: Gravitational scattering in the ADD model at high and low energies

factor mn−1 then gives this power-like fall-off for dis-
tances large compared toMs.
– Short distances, r < 1/Ms
For smaller r-values we find instead that the factor
e−mr is irrelevant, and the result is

V (r)

m1m2
=

−1

2Mn+2D

Sn

4π

1

r

∫ ∞

0

dmmn−1e−m
2/M2s

=
−πn/2

8π

Mns
Mn+2D

·
1

r
. (27)

Due to the cut-off, the integral in (25) is dominated
by m-values close to Ms for all r-values smaller than
1/Ms. Thus, when the distance is smaller than the
brane width, the result is a potential proportional
to 1/r, corresponding to a standard 3-dimensional
Coulomb potential, although with a coupling constant
∼Mns /M

n+2
D ∼ (MsR)nGN(4) instead of GN(4). Thus

the coupling is enhanced by a factor ∼ (MsR)n =(
compactification radius

brane width

)n
.

4.3 Eikonal

In a similar way we can calculate the eikonal χ(b) by
a 2-dimensional Fourier transform in the transverse
coordinates:

χ(b) =
1

2s

∫
d2k̄⊥
(2π)2

eik̄⊥b̄⊥ABorn(−k̄
2
⊥)

=
−s

2Mn+2D

Sn

(2π)2

∫ ∞

0

dmmn−1e−m
2/M2s

×

∫
d2k̄⊥e

ik̄⊥b̄⊥
1

m2+ k̄2⊥

=
−s

2Mn+2D

Sn

(2π)2
2π

∫ ∞

0

dmmn−1e−m
2/M2s

×

∫ ∞

0

k⊥ dk⊥
m2+k2⊥

J0(k⊥b)

=
−s

2Mn+2D

Sn

2π

∫ ∞

0

dmmn−1e−m
2/M2s K0(mb) .

(28)

This integral can be expressed in terms of confluent hyper-
geometric functions of the second kind:

χ(b) =−
sMns
Mn+2D

Γ
(n
2

) πn/2−1
8
U

(
n

2
, 1,
M2s b

2

4

)
.

(29)

Note that this represents a smooth transition between high
and low energies not possible to obtain by ignoring short
distance terms. This expression can easily be used in nu-
merical calculations. For an intuitive picture, the result for
large and small b-values can be estimated in the same way
as the approximations in (26) and (27).

– Large impact parameters, b� 1/Ms
For large arguments the asymptotic behavior of the
Bessel function K0(mb) is proportional to exp(−mb)/

√
mb. This implies that for large b the Gaussian cut-off
is unessential, and we find the eikonal

χ(b)≈
−s

2Mn+2D

Sn

2π

∫
dmmn−1K0(mb)

=
−s

Mn+2D

Sn

π
2n−4Γ 2(n/2) ·

1

bn

=
−s

2Mn+2D

(4π)
n
2−1Γ

(n
2

)
·
1

bn
. (30)

– Small impact parameters, b� 1/Ms
For small arguments we have K0(mb) ≈ ln(1/(mb)),
which implies

χ(b)≈
−s

2Mn+2D

Sn

2π

∫
dmmn−1e−m

2/M2s ln

(
1

mb

)

=
π
n
2−1

4

s

M2D

(
Ms

MD

)n(
ln(Msb)+

1

2
ψ
(n
2

))
,

(31)

where ψ(n2 ) is the psi or digamma function.

Thus we see that the eikonal falls off ∝ 1/bn for large b,
and grows logarithmically when b→ 0. Using the quantity
bc from (11) and keeping only the dominant term ln(Msb)
in (31), we can write the results in the form

χ(b)≈−

(
bc

b

)n
; b > bd (32)

χ(b)≈
−(bcMs)n

2n−1Γ (n/2)
ln

(
1

Msb

)
, b < bd (33)

bd ≡
1

Ms
, (34)

bc ≡

[
s(4π)

n
2−1Γ (n/2)

2Mn+2D

]1/n
. (35)

Fig. 2. The logarithm of |χ| as a function of impact parame-
ter for n= 3. The curves show the example where

√
s,MD, and

Ms have the same magnitude, and the units are chosen such
that

√
s=MD =Ms = 1. This also implies that bd = 1. The up-

permost line is the large b limit of χ taken from (32) and the
lowermost line is the small b limit of χ taken from (33). The in-
terpolating line is the exact expression (29). Note that a change
in s and/orMD, keepingMs constant, just corresponds to shift-
ing all curves up or down
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The separation line bd = 1/Ms is an estimate of the b-value
where χ(b) changes behavior. As an example Fig. 2 shows
these approximations forχ togetherwith the exact result for
n = 3 and

√
s =MD = 1 in units such thatMs = 1. As χ is

proportional to s/Mn+2D , a change in s and/orMD just cor-
responds toa shiftofall curves the samedistanceupordown.

5 Higher order loop corrections

We note that three different energy scales enter the expres-
sions for the Born amplitude in (22) and (29):

√
s,MD, and

Ms. Here
√
s is the total energy in the scattering, MD is

the fundamental Planck scale determined by the compact-
ification radius R, and Ms is related to the width of the
brane (or the brane tension). The result depends on the
relative magnitude of these quantities, and in the follow-
ing we will successively discuss five different kinematical
regions, which are illustrated in Fig. 3.

5.1 Eikonal regions, s�M2
s

We study the scattering process in the overall CM system,
where the momentum exchange has no 0-component, k =
(0; k̄) and t =−k̄2. From (23) we see that ABorn falls off ∝
1/k̄2 for k̄2 >M2s . Thus for high energies, such that s�M

2
s ,

corresponding to region 1 and 2 in Fig. 3, the Born term is
dominatedby small values of k̄2/s, i.e. small angles.This im-
plies that the eikonal approximation is applicable. We note
inparticular that it isMs rather thanMD, that sets the scale

Fig. 3. The (
√
s,Ms)-plane for n= 3 andMD = 1. The straight

line separating region 1 and 4 is
√
s =Ms, while the straight

line separating region 4 and 5 is the line where the real and
imaginary parts in (39) have equal magnitude. The power-like
curve separating region 1 and 2 is

√
scd from (37) as a function

ofMs, and the line separating the regions 4 and 5 from region 3
is the line where |ABornX|= 1; see (39). In the regions 1 and 2√
s is larger thanMs, and, at least for

√
s�Ms, the eikonal ap-

proximation is correct. In region 1 the eikonal is, depending on
b, either large compared to 1 or given by (32). In region 2 on the
other hand the b-range where χ is small includes a region where
it is described by (33). In region 3 the corrections correspond-
ing to higher order loops are small, but in region 4 they must
be significant to assure unitarity

for when the eikonal approximation is relevant. As demon-
strated in [9–11] the one-loop integral in (12) is dominated
by the imaginary part given by(13). The contributions from
multi-loop ladder diagrams (Fig. 1b) exponentiate, and the
scattering amplitude is given by (14):

Aeik(k
2) = 2is

∫
d2b̄⊥e

ik̄⊥·b̄⊥(1− eiχ) . (36)

From (36) we see that the higher order corrections are
important when χ is of order 1 or larger. Correspondingly
the Born term dominates when |χ| < 1. We see from (33)
and (34) that χ varies only logarithmically when b is de-
creased below the point b = bd. The importance of the
higher order corrections for the integrated cross section
therefore depends on whether or not |χ(bd)| > 1. This re-
lation is satisfied whenever bc > bd, or equivalently when
s > scd, with scd given by

scd =
2

(4π)
n
2−1Γ (n2 )

Mn+2D

Mns
. (37)

This defines the boundary between region 1 and region 2
in Fig. 3. In region 1 higher order terms are important for
b < bc, and the exponentiation in (36) is essential to keep
the amplitude within the unitarity constraints.
The difference between regions 1 and 2 is illustrated

in Fig. 4. Figure 4a corresponds to region 1, where the en-
ergy is high, and bc > bd. The absolute value of the eikonal
χ is smaller than 1 for b > bc, and in this range the ap-
proximation in (32) is relevant. For b < bc, |χ| is large and
rapidly varying, which causes the exponent in (36) to oscil-
late rapidly.
Figure 4b corresponds to region 2. Here |χ|< 1 except

in a very small region

b <
1

Ms
exp

(
−
4Mn+2D π1−

n
2

sMns

)
(38)

around the origin. Therefore the Born term dominates
the cross section, and higher order terms give only small
corrections.

5.2 Non-eikonal regions, s <M2
s

The Born amplitude in (24) is almost independent of the
momentum exchange k̄ when k�Ms. When

√
s�Ms (re-

gions 3, 4, and 5 in Fig. 3) this includes all kinematically al-
lowed k̄-values, which implies that the scattering is almost
isotropic. Thus the exchange of the KKmodes corresponds
effectively to a contact interaction. (For wide-angle scatter-
ing we also expect corrections from spin polarization. This
effect is neglected in the following.) The one-loop contribu-
tion in Fig. 1a is then represented by the diagram in Fig. 5a.
We denote the momenta in the intermediate state P/2± q,
with P = p1+ p2, as indicated in Fig. 5a, and in the CMS
wehaveP = (W, 0̄). The vertices are then given by the Born
term in (24). The real part of the one-loop integral is loga-
rithmically divergent, and in an effective field theory a cut-
off is needed to get the observed gravitational interaction at
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Fig. 4. −χ as a function of impact parameter for two examples with n= 3. a High energies corresponding to region 1 in Fig. 3,
with

√
s= 10 TeV,Ms = 1TeV andMD = 1TeV. The upper curve is the approximate expression in (30), and the lower curve the

exact expression (39). b Kinematics corresponding to region 2 in Fig. 3,
√
s= 0.1 TeV, Ms = 1TeV and MD = 1TeV. The upper

curve is the approximate high b expression in (32), the lower curve the approximate low b expression in (33) and the interpolating
line is the exact expression in (29)

Fig. 5.When the exchanged momentum is small compared to
Ms, the KK propagators are effectively replaced by vertex fac-
tors. The diagrams in Fig. 1 can then be drawn as above with
only standard model particle lines

long (measurable) distances. We here expect this cut-off to
be of orderMs, and the result is therefore given by

A1-loop(k
2) =

−i

2

∫

q<Ms

d4q

(2π)4
A2Born

1

(P/2− q)2
1

(P/2+ q)2

≡A2Born ·X,

X ≈
1

32π2

(
ln
4M2s
s
+ iπ

)
. (39)

We note here in particular that the result is a constant, in-
dependent of the momentum transfer k. Therefore also the
one-loop amplitude can be effectively regarded as a contact
term with a cut-off when k >Ms. The two-loop diagram
in Fig. 5b can then be calculated in the same way as the
one-loop diagram, and the result is

A2-loop =A1-loop ·ABornX =ABorn · (ABornX)
2 . (40)

In the same way we can calculate ladder diagrams with
more loops. Summing all ladders of this type we obtain

Aladder =ABorn(1+ABornX+(ABornX)
2+ . . . )

=
ABorn

1−ABornX
. (41)

We see that instead of the exponent in the eikonal regime
(where forward scattering dominates) we here obtain
a geometric series from these ladder contributions. The

Fig. 6. aAnexampleofanon-ladderdiagramcontributingtothe
elastic cross section in region 5 in Fig. 3. b An example of a dia-
gramcontributingtothe inelasticcrosssection inregion5inFig. 3

importance of higher order corrections is in this ap-
proximation determined by the quantity ABornX. When
|ABornX| � 1 the Born term dominates. This corresponds
to region 3 in Fig. 3.
When instead |ABornX| > 1, we expect different re-

sults depending on whether it is the real or the imag-
inary part which dominates. When ln(4M2s /s) < π, the
imaginary part dominates the loop integral in (39). Thus
this diagram is dominated by real intermediate states
i in Fig. 1a, and we might expect that the ladder di-
agrams in Fig. 1b or Fig. 5b give the most important
higher order corrections. This corresponds to region 4 in
Fig. 3.
When ln(4M2s /s)> π (region 5 in Fig. 3) the real part

dominates the loop integral in (39). This indicates that
inelastic scattering and virtual intermediate states are es-
sential. Naturally a full understanding of these processes
needs a theory for quantum gravity, but assuming that
they can be described by an effective field theory, we will
expect important contributions from more complicated,
non-ladder, diagrams, like the examples shown in Fig. 6.
For this reasonwe do not expect the result in (41) to be rep-
resentative for a sum of all higher order corrections in this
kinematical region.

6 Cross sections

Belowwe successively discuss the cross sections obtained in
the five different regions in Fig. 3.
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6.1 Region 1, s >M2
s and |χ(bd)|> 1

In this region s > M2s and χ(bd) > 1. As discussed in
Sect. 5.1 the scattering is suppressed for −t > M2s . The
first constraint therefore means that the cross section is
dominated by small angle scattering, the imaginary part
dominates the one-loop contribution, and the eikonal χ(b)
exponentiates. The cross section is then given by

σ =

∫
d2b̄⊥2Re

(
1− eiχ(b̄⊥)

)
. (42)

The effect of the constraint |χ(bd)| > 1 was illustrated in
Fig. 4a. It implies that bd < bc, and that the approximation
χ ≈−(bc/b)n in (32) is relevant for all b > bc. In particu-
lar this means that, for b > bc (> bd), we have |χ|< 1 and
2Re(1− eiχ(b̄⊥)) ≈ χ2. For collisions with b < bc, higher
order loop corrections are important to satisfy unitarity.
Here |χ| is larger than 1 and rapidly varying, the exponent
in (42) is oscillating, and therefore

〈
2Re

(
1− eiχ(b̄⊥)

)〉
≈ 2 . (43)

Inserting these results into (42), we get (for n≥ 2) the fol-
lowing result for the total cross section:

σ ≈

∫ bc

0

d2b ·2+

∫ ∞

bc

d2b

(
bc

b

)2n

= πb2c

(
2+

1

n−1

)
= 2πb2c

n−1/2

n−1
. (44)

When s is increased, σ grows proportional to b2c ∝ s
2/n. We

note that the cross section is dominated by central colli-
sions with b < bc (especially for large n), with only a small
contribution from larger impact parameters. Integrating
the constant 1 in the parentheses in (36) between 0 and bc
gives a dominant forward peak, with oscillations at larger
angles. The amplitude for these oscillations falls off pro-
portional to 1/k3/2, corresponding to dσ/dt∝ 1/k3 for the
cross section.
For large k the dominant contribution in (36) comes

from the term eiχ and a small range of b-values around bs,
where

bs = bc

(
n

kbc

) 1
n+1

. (45)

For these b-values the frequencies of the exponents eik·b

and eiχ(b) in (36) oscillate in phase, which gives an en-
hanced contribution. Using the saddle-point approxima-
tion we get from this contribution (apart from logarithmic
corrections) a cross section which falls off like dσ/dt ∝

1/t
n+2
n+1 . This contribution is dominating for k > n/bc,

where |χ(bs)| > 1. As pointed out in [4] it corresponds to
classical scattering in a 1/rn+1 potential. For small scat-
tering angles θ we have for a non-relativistic particle with

mass m1 moving with constant speed v and momentum
p=m1v in the potential of a massm2

θ ≈
|p̄⊥|

|p|
=
1

|p|

∫ ∞

−∞
dtF⊥(r) (46)

=−GN(4)R
nSnΓ (n)

m1m2

m1v

∫ ∞

−∞

dr

v

d

db

(
1

√
r2+ b2

)n+1

=
n(2
√
π)nΓ (n2 )

8πv2
m2

Mn+2D

1

bn+1
.

From this we see that ifm1 = s/(4m2)

bnonrel = bc

(
n

4vpbc

) 1
n+1

, (47)

agreeing parametrically with (45). (A numerical differ-
ence is expected since (45) is ultra-relativistic whereas (47)
is a non-relativistic result.) This behavior is discussed in
more detail in [4], and we note that in this region, where s
is much larger than both M2s and scd, our result is consis-
tent with the result of this reference. A necessary condition
is, however, that

√
s, MD, and Ms have values such that

bs > bd = 1/Ms, which for fixed k-value gives a minimum
value forMs. If this relation is not satisfied, the phase vari-
ation in exp(iχ) is given by (33) rather than (32), and
therefore we do not get the phase coherence in the integral
in (36).

6.2 Region 2, s >M2
s and |χ(bd)|< 1

In region 2, s is larger than M2s but smaller than scd,
and therefore bd > bc. A typical example is illustrated in
Fig. 4b. We see here that |χ| is small compared to 1, apart
from the logarithmic peak for very small b. The influence
of the small b peak is also suppressed by a phase space fac-
tor proportional to bdb. The cross section is therefore well
approximated by the Born amplitude.
The largest contributions to the cross section come

from b-values in the neighborhood of bd; for larger b, χ falls
off ∝ (bc/b)n, and for smaller b the scattering is limited
by the smaller phase space ∼ bdb. These b-values are just
in the transition region between the two asymptotic forms
in (32) and (33). To get a good estimate of the cross sec-
tion we should therefore use the exact expression for χ in
(29). For an order of magnitude estimate we may, however,
approximate χ by the asymptotic result χ≈ −(bc/b)n for
b > bd, and by a constant =−(bc/bd)n for all b < bd. This
gives the following qualitative estimate for the total cross
section:

σ ∼

∫ bd

0

d2b

(
bc

bd

)2n
+

∫ ∞

bd

d2b

(
bc

b

)2n

= π
b2nc
b2n−2d

n

n−1
. (48)

As bc ∼ (s/M
n+2
D )1/n, and bd = 1/Ms, we note that the

cross section grows ∝ s2M2n−2s /M2n+4D . Thus, although
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the cross section is comparatively small in this region, it
has a stronger growth rate ∝ s2 than in region 1.
For the differential cross section, we note that the t-

channel Born amplitude is proportional to 1/k2 for −k2�
M2s . This implies that the cross section has a forward peak.
It corresponds to scattering at distances small compared
to 1/Ms, in the 1/r potential from (27). There is how-
ever no forward divergence since the growth is softened
at −k2 ∼M2s , i.e. at distances comparable to the brane
thickness.

6.3 Region 3, s <M2
s and |ABornX|< 1

In region 3 the cross section is also dominated by the
Born amplitude. But in this case the scattering is al-
most isotropic (apart from spin dependences) as the fac-
tor −k2 in the propagator is small compared to the
heavier and most important KK modes. This implies
that we may also have important contributions from u-
and s-channel exchanges. For identical particles, the u-
channel contribution has the same magnitude as that from
t-channel.

6.4 Region 4, s <M2
s , |ABornX|> 1

and Im(X)>Re(X)

The one-loop t-type contribution in Fig. 5a is dominated
by the imaginary part, originating from real intermedi-
ate states. If loop diagrams of this type dominate (and
we can neglect the angular dependence due to spin ef-
fects) the all-loop amplitude can be approximated by the
geometric sum in (39). As in region 3, the result is then
approximately isotropic, but here the Born contribution
is suppressed by the higher order corrections. For identi-
cal particles the u-type ladder is identical to the t-type
ladder and hence equally important. For identical particle–
antiparticle pairs also s-channel contributions have to be
considered.

6.5 Region 5, s <M2
s , |ABornX|> 1

and Im(X)<Re(X)

This region corresponds to situations where the effective
cut-off Ms is large (“narrow brane” or strong “brane ten-
sion”) and the energy is in an intermediate range. From
Fig. 3 we see that for e.g. n = 3 Ms must be larger than
5MD. The one-loop diagram has a dominant real part,
which implies that virtual intermediate states and inelas-
tic reactions are important. Therefore non-ladder diagrams
are expected to give large contributions, and we showed
two examples in Fig. 6. This region may consequently be
much more complicated than the other kinematical re-
gions, and more sensitive to unknown features of quantum
gravity. In this paper we will therefore not make any spe-
cific predictions for what might be expected in this kine-
matic region.

7 Conclusions

In the ADD model it is assumed that standard model
particles live on a 4-dimensional brane, embedded in
a (4+n)-dimensional space with n compactified dimen-
sions. In these, only the gravitational field is allowed to
propagate. If the brane is infinitely thin and infinitely rigid,
the exchange of very massive Kaluza–Klein modes repre-
sents a contact interaction of infinite strength between the
standard model particles. This is not physically acceptable
and different ideas have been proposed to regularize the
scattering process.
If the brane has a finite width, or if it is not infinitely

well localized, the exchange of KK modes will be sup-
pressed for KK wavelengths shorter than the width of the
brane, or the size of its fluctuations. If gravitational in-
teraction can be described by an effective field theory, we
then expect an effective cut-off (denoted Ms) for high KK
masses, which does not have to be of the same magnitude
as the fundamental Planck massMD.
In this paper we have studied the effect of such a cut-

off on the scattering of standard model particles at var-
ious energies. We find that several troublesome infinities
and divergences are removed. The scattering process de-
pends on three different energy scales, the collision energy√
s, the fundamental Planck scale MD, and the cut-off
scale Ms. The Planck scale, MD = (8πR

nGN(4)
−1/(n+2),

depends on the compactification radius R of the extra di-
mensions and the magnitude of Newton’s constant, while
the effective cut-off depends on the width of the brane,
Ms ∼ (brane thickness)−1, or the fluctuations in its pos-
ition. These scales are thus not automatically related.
Clearly the compactification scale R must be larger than
the brane width 1/Ms.
Depending on the relative magnitude between these

scales, we have here studied five different kinematical
regions with different dynamical behavior. In one re-
gion (region 1 in Fig. 3), the scattering is dominated by
small angles, and the eikonal approximation is applica-
ble. Here we recognize classical scattering in a 1/rn+1

potential and the results of Giudice–Rattazzi–Wells [4].
In two other regions (2 and 3 in Fig. 3) the Born ap-
proximation is applicable. In one of these (region 2) for-
ward scattering dominates and corresponds to scatter-
ing in a 1/r potential, but with a coupling enhanced

by a factor proportional to
(
compactification radius

brane width

)n
com-

pared to scattering in the ordinary 1/r Newtonian large
distance potential. In the other Born region (region 3)
the scattering is approximately isotropic, as expected
in [5, 6]. In a fourth region it is suggested that the ex-
ponentiation from ladder-type diagrams in the eikonal
region is replaced by a geometric sum. The scattering
is expected to be mostly elastic, since on-shell interme-
diate states dominate, but approximately isotropic. In
the last region inelastic processes and non-ladder loop
diagrams are important and make predictions very dif-
ficult. The boundaries between the different regions are
expressed in the three mass scales involved, as illustrated
in Fig. 3.
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